Mapping the rheology of the Central Chile subduction zone with aftershocks

Abstract

The postseismic deformation following a large ($M_w >$ 7) earthquake is expressed both seismically and aseismically. Recent studies have appealed to a model that suggests that the aseismic slip on the plate interface following the mainshock can be the driving factor in aftershock sequences, reproducing both the geodetic (afterslip) and seismic (aftershocks) observables of postseismic deformation. Exploiting this model, we demonstrate how a dense catalog of aftershocks following the 2015 $M_w$ 8.3 Illapel earthquake in Central Chile can constrain the frictional and rheological properties of the creeping regions of the subduction interface. We first expand the aftershock catalog via a 19 month continuous matched-filter search and highlight the log-time expansion of seismicity following the mainshock, suggestive of afterslip as the main driver of aftershock activity. We then show how the time history of aftershocks can constrain the temporal evolution of afterslip. Finally, we use our dense aftershock catalog to estimate the rate and state rheological parameter $(a ? b) σ$ as a function of depth and demonstrate that this low value is compatible either with a nearly velocity-neutral friction ($a ≈ b$) in the regions of the megathrust that host afterslip, or an elevated pore fluid pressure (low effective normal stress $σ$) along the plate interface. Our results present the first snapshot of rheology in depth together with the evolution of the tectonic stressing rate along a plate boundary. The framework described here can be generalized to any tectonic context and provides a novel way to constrain the frictional properties and loading conditions of active faults.

Publication
Geophysical Research Letters
William B. Frank
William B. Frank
Assistant Professor

My research focuses on how the Earth’s crust deforms over a broad range spatiotemporal scales.

Piero Poli
Piero Poli
Assistant Professor

A long-time collaborator with an interest in all things seismology.

Related